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Standard Diagnostics in EP Development and Testing
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A. V. Loyan and A. N. Khaustova,Hall Thru
ster Erosion. IntechOpen (2019).https://doi.
org/10.5772/intechopen.82654

P. Dietz et al., Plasma Sources Sci. Technol. 28, 0
84001 (2019)

Saridede, Yediyildiz, and Celik, J. Aeros
p. Technol. Manag. 15 (2023)https://doi.
org/10.1590/jatm.v15.1294

Hall Thruster Gridded Ion Thruster High-Efficiency Multistage
Plasma Thruster (HEMPT)

Some Important Thruster Types

https://doi.org/10.5772/intechopen.82654
https://doi.org/10.5772/intechopen.82654
https://doi.org/10.5772/intechopen.82654
https://doi.org/10.1088/1361-6595/ab2c6c
https://doi.org/10.1088/1361-6595/ab2c6c
https://doi.org/10.1590/jatm.v15.1294
https://doi.org/10.1590/jatm.v15.1294
https://doi.org/10.1590/jatm.v15.1294
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Example of a thrust balance:

Inverted Pendulum Thrust Balance

Challenges:
● Thrust-to-weight ratio often < 1:500
● Cables, gas feeds act like springs  

Direct Thrust Measurements

Xu and Walker, Rev. Sci. Instrum. 80, 055103 (2009)

https://doi.org/10.1063/1.3125626
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● Langmuir probes
● „Faraday probes“

Less common in test facilities,
more common in
research laboratories:

● Emission spectroscopy
● Laser induced fluorescence
● Quadrupole mass

spectrometry
● ExB probe (Wien or 

velocity filter)
● Electrostatic filters

Maystrenko et al., Rev. Sci. Instrum. 93,073504 (2022)

A. Spethmann et al., Rev. Sci. Instrum. 86,015107 (2015)

Standard Diagnostics mostly measure Currents

Faraday Cup Retarding Potential Analyzer Others

https://doi.org/10.1063/5.0083810
https://doi.org/10.1063/1.4905534
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The Challenge of Charge-Exchange Collisions

λcx

Miller and Pullins, J. Appl. Phys. 91, 984 (2002)

CEX collision reactions:

Example:

p = 10 mPa
Ekin = 1200 eV

→ λcx = 0.92 m

“collision”

after

Xe+

Xe+

Xe

Xe

before

Thruster

Why are CEX collisions important?

Electrostatic diagnostics
can only measure currents

Thermal (slow) ions are released
at elevated potentials
and return to the spacecraft
with high kinetic energies
(sputtering)

https://doi.org/10.1063/1.1426246
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Force Probes as a Novel Diagnostic
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Force Probes as a Novel Thruster Diagnostic

Klette et al., J. Vac. Sci. Technol. A 38, 033013 (2020)

Calibration with
mg weights

Compact version
of the force probe

Essential parts

eddy current brake

T. Trottenberg et al., 35th Int. Electric Prop. Conf.,Georgia,
 Atlanta, USA, IEPC-2017-096 (2017)

https://electricrocket.org/IEPC/IEPC_2017_96.pdf
https://doi.org/10.1116/6.0000109
https://electricrocket.org/IEPC/IEPC_2017_96.pdf
https://electricrocket.org/IEPC/IEPC_2017_96.pdf
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Measurement in der “NexET” chamber at
ICARE in Orléans.

● Simultaneous current measurement 
with the grounded target

● Currents include electrons
● Calculation of the force from the 

measured electric currents 
underestimates the real forces
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Measurement with shutter

Spethmann et al., EPJ Techn.Instrum. 9, 4 (2022)

Force Probes as a Novel Thruster Diagnostic

https://doi.org/10.1140/epjti/s40485-022-00079-w
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● Anode current:
700 V, 145 mA

● Gas flow: 2.5 sccm Xe 

● Anode current:
350 V, 245 mA

● Gas flow: 4 sccm Xe

Measurement at the Laboratory for 
Enabling Technologies, Airbus, 
Friedrichshafen, Germany.

● Swivel arm (constant distance)
● Integration of the momentum flux 

density agrees with direct thrust 
measurement (thrust balance)

● Forces calculated from currents 
underestimate the real forces 
(charge-exchange collisions)

Comparison with 
thrust balance

● “High Isp Mode”:
Integration: 2.9 mN,
Balance: 3236 μN

● “Low Isp Mode”:
Integration: 3.6 mN,
Balance: 3200 μN

“Low Isp Mode” “High Isp Mode”

Spethmann et al., EPJ Techn.Instrum. 9, 4 (2022)

Force Probes as a Novel Thruster Diagnostic

https://doi.org/10.1140/epjti/s40485-022-00079-w
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Trottenberg et al., EPJ Techn. Instrum. 5, 3 (2018)

Force Probes for the Study of Sputtering

The two-axis
probe
measures
force as a
2d vector 

https://doi.org/10.1140/epjti/s40485-018-0044-2
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A 1.2 keV Ar/Ar+ beam impacts on a copper (Cu) surface
and a carbon fiber velvet (CFV) suface. The solid and dashed 
lines indicate the theoretical case of ideal absorption (I.A.).

Ar

Ar+

Cu
Cu

Cu

Trottenberg et al., EPJ Techn. Instrum. 5, 3 (2018)

Force Probes for the Study of Sputtering

https://doi.org/10.1140/epjti/s40485-018-0044-2
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The EPDP for the Heinrich Hertz Satellite
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● Explore and test new
telecommunications technologies

● Platform for sientific and technological
experiments

● Pair of HEMPT 3050 thrusters
+ pair of SPT-100 thrusters

● launched July 6th, 2023
● Financed by DLR
● Integrated by OHB

Heinrich Hertz Satellite
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Plasma Sensor (PS)

Erosion Sensor (ES)

Electric Propulsion Diagnostic Package
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Electric Propulsion Diagnostic Package
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EPDP Mounting Positions on the Satellite
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EPDP Mounting Positions on the Satellite
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The EPDP Sensors

Langmuir Probe (LP):

● Probe area 3.1 cm²
● Ion saturation currents

2 nA … 0.5 µA

Retarding Potential Analyzer (RPA):

● Four grids
● 0.5 mm holes
● Hexagonal pattern
● 0.7 mm “grid constant”
● Segmented collector
● 23 mm entrance to collector

Erosion Sensor:

Resistance measurement

Silver meander on ceramic
originally 15 Ω:
● 180 cm long
● 2 µm thick
● 1 mm wide

LP

RPA

Trottenberg et al., EPJ Techn. Instrum. 8, 16 (2021)

https://doi.org/10.1140/epjti/s40485-021-00073-8


Institute of Experimental and Applied Physics

Thomas Trottenberg International Online Plasma Seminar (GEC IOPS) March 27th, 2025        23

0 V

−25 V

−25 V

0 ... 120 V

E

PE

D

SE

C

Ion 1

Ion 2

Secondary
   electron

Plasma
   electron

Quick Recap: What is a Retarding Potential Analyzer (RPA)?

Four-grid RPA

E: Entrance grid
PE: Plasma electron repeller grid
D: Discriminator grid
SE: Secondary electron repeller grid
C: Collector

The trajectories illustrate…
● an ion (black) that overcomes

the retarding potential,
● one that does not (red),
● electrons originating

from the plasma (blue),
● electrons from the collector (green).

● Characeristics are
monotonically decreasing

● Derivatives yield
distribution functions
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Data from Measurements with a HEMPT: Chamber & Space

Data from Tests in ULAN chamber (Thales) Data from EPDP in Space
(absolute values not disclosed)



Institute of Experimental and Applied Physics

Thomas Trottenberg International Online Plasma Seminar (GEC IOPS) March 27th, 2025        25

Data from the Plasma Sensor
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50 cm

longitudinal
translation
stage

ion source

grids
beam dump

harness feed
throughs

window

lateral
translation stage

screen

rotational
stage

cathode

aperture

cylindrical
Langmuir probe

DM

FM

Test Setup for Mimicking the Secondary Plasma from the Thruster
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Test Setup with two Prototypes of the Plasma Sensor
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Test Setup with Xenon Ion Beam
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Test Setup: Plasma Diagnostics in the Chamber with Xenon Ion Beam

Trottenberg et al., EPJ Techn. Instrum. 8, 16 (2021)

https://doi.org/10.1140/epjti/s40485-021-00073-8
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32.5 cm
34 cm

25 cm14 cm

14 cm
6 cm

P1

● Position of the sensors:    outside the 1.2-keV beam

● Biasing the cathode shifts the plasma potential

● Purpose: Different energies can be given to the CEX ions.
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Flight Model
Demonstrator Model

The cathode is biased in the
range   -80 V … +20 V.

The plasma potential varies
from ~10 V to ~50 V.

Test Setup: Controlled Generation of CEX Ions with Different Energies
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LP: measured 14 cm away from the beam
for Ucath = -80 V, -60 V, -40 V, -20 V, 0 V 
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Test Setup: Controlled Generation of CEX Ions with Different Energies
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Ranges of the Plasma Sensor:

Energy: 0 – 300 eV
Collector currents: < 1 µA

Cannot be exposed to 1,2-keV beam

Operating the ion source without
acceleration (anode) voltage:

Ion energy: ~ 100 eV
Ion current density: 17.3 mA/m²

32.5 cm
34 cm

25 cm

14 cm
6 cm

P2

Test Setup with “Idling” Ion Beam Source: Ion energies ~100 eV



Institute of Experimental and Applied Physics

Thomas Trottenberg International Online Plasma Seminar (GEC IOPS) March 27th, 2025        33

center edge outside

RPA characteristics
and derived
energy distributions
at three positions
relative to the beam.

Two populations:
• Primary ions
• Charge-exchange

Ions

Trottenberg et al., EPJ Techn. Instrum. 8, 16 (2021)

Test Setup with “Idling” Ion Beam Source: Ion energies ~100 eV

https://doi.org/10.1140/epjti/s40485-021-00073-8
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Unexpected Features of the Retarding Potential Analyzer
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The ‚Demonstrator Model‘ and the later built Engineering Model‘
produced significantly different trajectories – What happened?

A “good” characteristic should be monotonically decreasing!

Demonstrator Model
Engineering Model

A Surprising Anomalie in the Characteristic of the EM 
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(a) (b) (c) (d)
„0“ „1“„0“

The hexagonal pattern 
and the square frames 
allow two different 
orientations of each grid: 
rotated or not rotated.

0: not rotated
1: rotated  

Grid Orientations
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RPA characteristics (I vs V)

32.5 cm
35 cm

16 cm

8 cm

6 
cm

ion source

screen

RPA

FC cathode

We operated the ion source without applying an
acceleration voltage („idling mode“)

–> ion energies: ~100 eV,
     low current densities: ~17 mA/m².

The RPA was reconfigured 8 times.

Grid Orientations

Setup:

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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32.5 cm
35 cm

16 cm

8 cm

6 
cm

ion source

screen

RPA

FC cathode

Grid Orientations

Setup:

RPA characteristics (I vs V)

Trottenberg et al., AIP Advances 15, 035030 (2025)

We operated the ion source without applying an
acceleration voltage („idling mode“)

–> ion energies: ~100 eV,
     low current densities: ~17 mA/m².

The RPA was reconfigured 8 times.

https://doi.org/10.1063/5.0250806
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The simplest model assumes homogeneous
electric fields between the grids

The trajectories
are composed
of piecewise
parabolic sections.

Modeling of the Retarding Potential Analyzer
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collector

secondary electron repeller grid
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plasma electron repeller grid

entrance grid

An improved model accounts for field distortions
due to the 3d structure of the grid frames

Generic potential map
(lines for ΔU/10 steps in gaps).

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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Jackson, Classical Electrodynamics, 3rd. ed. (1999)

Modeling of the Retarding Potential Analyzer

Further refinements: Near-field effects in the holes.
The grid with holes may be either thin or of finite thickness.
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Analytical 
solution

Finite Element Method

Shown Example:
Repeller grids at -25 V,
discriminator grid at +100 V.

Saddle point potentials:
(a) -3.98 V below grid potential,
(b) -1.85 V below grid potential.

Consequence of
the saddle points:
„too slow“ ions can
pass through the
discriminator grid.

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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Grid configuration: 0101
Ion energy: 105 eV
angle to normal (theta): 0.1°
Discriminator voltage Uscan: +100 V
Repeller voltage:      -25 V

vx =       22 m/s
vy =         0 m/s
vz = 12437 m/s

Trajectories according to different models

Modeling of the Retarding Potential Analyzer

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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Only radial field distortion, not near fields of the holes

Modeling of the Retarding Potential Analyzer

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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With not near fields of the holes & thin grids

Modeling of the Retarding Potential Analyzer

&

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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With near fields of the holes & thick grids (2 µm)

Modeling of the Retarding Potential Analyzer

&&

Trottenberg et al., AIP Advances 15, 035030 (2025)

https://doi.org/10.1063/5.0250806
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"good": Grids 3 and 4 are not aligned, Grid 2 is not relevant.

"intermediate": Grids 3 and 4 are aligned, Grid 2 is aligned differently.

"bad": Grids 2, 3, and 4 are aligned.

With regard to the configurations, it can be stated that:

● The hole radius should be small compared to the grid spacing.
● The correlations of the hole positions in neighboring grids should be small,
● Irregular hole patterns could be beneficial.

Modeling of the Retarding Potential Analyzer
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Summary
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● Standard diagnostics in EP

● Force probes – a useful charge-independent tool for spatially resolved momentum flux measurements

● Force probes – a tool for investigations of sputtering and validation of simulation codes

● In-flight diagnostics

● Retarding potential analyzer: The role of grid geometry and grid orientations 

Summary
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