

The University of Manchester

Non thermal plasma with metal-organic frameworks (MOFs) for challenging catalytic processes

28th March 2024

Shaojun Xu

shaojun.xu@manchester.ac.uk

1. Background

2. Combination of Plasma and Porous Catalyst

3. Plasma catalysis for DeNO_x reaction

1. Background

What is plasma used in chemical engineering?

Conventional thermal catalysis VS plasma-assisted catalysis

- Extreme operating conditions;
 - High temperature,
 - High pressure;
 - High conversion;
- High energy consumption;
- Well understood mechanism

- Mild operating conditions;
 - Low temperature, non-thermal;
 - atmospheric pressure;
 - Low conversion;
- Low energy consumption;
- Not well understood mechanism

Nonthermal Atmospheric pressure

Higher energy electrons

1. Background

Plasma Process. Polym, 14 (2017) 1600157; *Chin J. Chem Eng.*, (2020); *Chem Eng J*, 258 (2014) 119

"Catalysis" meaning?

Interaction between Plasma and Catalyst?

Which is more important?

How to decouple?

1

2. Combination of Plasma and Porous Catalyst

Non-thermal plasma for water–gas shift reaction (WGSR) using metal–organic frameworks (HKUST-1)

 $CO + H_2O \rightarrow CO_2 + H_2$

Cu₃(BTC)₂ framework or HKUST-1

Metal nodes: **copper – open metal sites (OMSs)** Organic linkers: benzene-1,3,5-tricarboxylate (BTC) Hydrothermal stability: **T < 300 °C, 0 RH%**

Effect of Plasma during the reaction?

Plasma enhance Catalysis vs Catalyst enhance Plasma (OES) Role of Catalyst?

Active sites (Plasma-DRIFTS)

Non-Thermal Plasma (NTP) Nonthermal High energy electrons

MOF Thermal stability Hydrothermal stability

<u>Xu</u> et al,. *Nature Catalysis*, 2 (2019) 142. 6

2. Combination of Plasma and Porous Catalyst

3. Plasma catalysis for DeNOx reaction

Conventional SCR catalysis

- Extreme operating conditions;
 - High temperature (300-400 °C),
 - High energy consumption;
- Requiring reducing agent (the release of unreacted ammonia)

VS Plasma-assisted catalysis

- Mild operating conditions;
 - Low temperature, non-thermal;
 - Low energy consumption
- No reducing agent, one-step dissociation;
 - Few study since 1965, no MOFs catalyst 8

3.1 Background

3.3 Non-thermal plasma (NTP) assisted dissociation of NO₂

3.3 Non-thermal plasma (NTP) assisted dissociation of NO₂

NTP at 25 °C, 500 ppm NO₂ /He, SEI 0.4 kJ L⁻¹, 240 min

Time / min

The time-dependant ToS plots of NO_2 conversion and N_2 selectivity over various Cuembedded catalysts for the NO_2 decomposition reaction under NTP conditions.

3.3 Non-thermal plasma (NTP) assisted dissociation of NO₂

Comparison of Cu/MFM-300(Al) with the state-of-the-art catalyst

Catayst	Temperat ure	Space velocity	Volume of catalysts	Total gas flow rate		NO ₂ conc.	NO ₂ conversion	Weight of cataysts	Cu wt% in the catalyst	Cu Molecular weight	Molar flow of reacted NO ₂ substrates	Cu sites	TOF*
	$^{\circ}C$	h^{-1}	mL	ml/min	mmo l/min	%	%	g	%	g/mol	mmol/h	mmol	h^{-I}
Cu/MFM-300(Al) [this work] CuO/MFM-300(Al) [this work]	25	150000	0.04	100	4.45	0.050	96	0.05	5.70	63.5	0.13	0.04	2.9
	25	150000	0.04	100	4.45	0.050	100	0.05	6.30	63.5	0.13	0.05	2.7
Cu/ZSM-5 [this work]	25	150000	0.04	100	4.45	0.050	90	0.05	7.00	63.5	0.12	0.06	2.2
CuO/ZSM-5 [this work]	25	150000	0.04	100	4.45	0.050	85	0.05	7.00	63.5	0.11	0.06	2.1
Cu/Al ₂ O ₃ [this work]	25	150000	0.04	100	4.45	0.050	84	0.05	8.00	63.5	0.11	0.06	1.8
CuO/Al ₂ O ₃ [this work]	25	150000	0.04	100	4.45	0.050	91	0.05	7.00	63.5	0.12	0.06	2.2
CuO/Al ₂ O ₃ ^[3]	325	9000	4.00	600	26.68	0.072	30	1.00	35.00	63.5	0.35	5.51	0.1
	520	70020	4.00	4668	207.61	0.126	99	1.00	35.00	63.5	15.54	5.51	2.8
HKUST-1@NTP ^{[4}	25	75000	0.40	500	22.24	0.050	99.87	0.50	32.51	65.5	0.67	2.48	0.3
4 wt.%Cu /ZSM-5 @NTP-H ₂ ^[5]	25	60000	2.00	2000	88.95	0.050	21	0.50	4.000	64.5	0.56	0.31	1.8
	180	60000	2.00	2000	88.95	0.050	60	0.50	4.000	64.5	1.60	0.31	5.2
Cu-SSZ-13 @Thermal-NH ₃ ^[6]	250	30000	0.60	300	13.34	0.035	95	0.13	5.92	63.5	0.27	0.12	2.2
	550	30000	0.60	300	13.34	0.035	83	0.13	5.92	63.5	0.23	0.12	1.9

Comparable to leading NH₃-SCR catalysts using NH₃ at 250-550 °C. Selective Catalytic reduction (SCR) <u>Xu</u> et al., *Cell Reports Physical Science*, 2021, 2, 100349. NO₂ conversion $\uparrow \& N_2$ selectivity \uparrow

Cu@MOF vs Cu@ZSM-5 or Al_2O_3

- Bare MOF background subtracted
- Gas phase NO₂ removed

 NO_x interaction \uparrow agree with NO_2 conversion \uparrow & N_2 selectivity \uparrow

14

3.4 Reaction mechanism

the rate-determining step $(NO \rightarrow N_2)$

Plasma-Catalysis Concept: Plasma—MOFs Catalysis

 NO_2 conv. 96% N_2 select. 82% RT and ATM

<u>Xu</u> et al, *Nature Catalysis*, 2019, 2(2), 142 <u>Xu</u> et al., *Cell Reports Physical Science*, 2021, 2, 100349 *Journal of the American Chemical Society*, 2021, 143, 29, 10977

CO oxidation on UiO-67 MOFs

CO₂ hydrogenation on Ni/UiO-66 MOFs

Dry reforming of methane on PtNP@UiO-67

Journal of Catalysis, 2020, 391, 522

AIChE Journal, 2020, 66, 16853

Applied Catalysis B: Environmental, 2020, 260, 118195

- > The new concept is generic for other MOFs and other reactions
- > Open up new research avenues in exploring the plasma-assisted MOFs-catalysis

The University of Manchester

European Research Council

THANK YOU FOR YOUR ATTENTION!

